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and Subordinators
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P. J. Fitzsimmons
and

Michael Taksar

Abstract

In this paper we give a simple construction of the general
stationary regenerative set, based on the stationary version of
the associated subordinator (increasing Levy process). We show
that, in a certain sense, the closed range of such a Levy process
is a stationary regenerative subset of R. The distribution of
this regenerative set is o-finite in general; it is finite iff the

increments of the Levy process have finite expectation.
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1. Introduction

A regenerative set is a random subset of R with the
property that any stopping time in the set splits the set into two
independent pieces, the right hand piece (as viewed from the
stopping time) having a distribution independent of the particular
stopping time. Such sets arise naturally as the set of times when
a strong Markov process visits a particular point in its state
space. For background on regenerative sets the reader can consult
(21, (51, (&1, (8], (9]}, [10], ([11], [13}, [14].

It is known ([8], [10], [11]) that any regenerative subset of
[0,+2[, defined on a probability space, can be realized as the
closed range of an appropriate subordinator (an increasing process
with stationary independent increments). This correspondence was
extended to the case of stationary subsets of R by Taksar [13],
and later by Maisonneuve [10]. Both of these authors confine
themselves to the case where the underlying measure space is a
probability space. This amounts to restricting attention to those
regenerative sets whose associated subordinators have increments
with finite expectation.

In recent years a theory of stationary Markov processes on
o-finite (typically infinite) underlying measure spaces has been
developed. The fundamental paper in this regard is Kuznetsov [7].
See also {3)]. With this theory in hand we can deal with the most
general stationary regenerative set. We consider a stationary
subordinator Y and its closed range M. Unfortunately the
distribution of M is never o-finite. But if T is an

appropriate random time (say a passage time of Y), then the pair
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(T,M}) has a o-finite law which factors as the product of Lebesgue
measure and a second measure P. The measure P is the
(o0-finite) distribution of a regenerative set which is naturally
associated with Y.

In the next section we set our notation and recall some basic
facts about subordinators and regenerative sets. In section 3 we
consider the range of a stationary subordinator, as discussed
above. In a final section we use the result of section 3 to give
a simple proof of the fact that if M is a stationary

regenerative set, then -M has the same distribution as M.




2. Regenerative Sets and_ Subordinators

Our notation and the basic definition (2.1) are inspired by

{10] and [(2]. The definition of rt below is slightly different

from that of (10} and [2]); this change was suggested to us by

Bernard Maisonneuve (private communication). See the note at the
end of [2].
[=]
Let denote the class of closed subsets of R. For

o (=4 .
teR, W € define

M
h
! ::"J o o o o
o~ dt(w ) = inf{s > t: s € w }; rt(w ) = dt(w ) - t;
W
_'- il (=] o
" Te(w ) =ce{s - t: s e wnlt, e} = ce((w - t)NJO,+e[).
* o
{ Here cé¢ denotes closure and inf ¢ = +». Set $ = o{rs : SERY},
(=]
o 9t = O{rs : s¢ t}). Clearly (dt: t € R) is an increasing cadlag
B “. °
fff process adapted to (@t: t € R),, and dt > t for all
B,
AL t e R,
:j A random set is a measurable mapping M from a measurable
)
A < Q
;:j space (R,¥%) into (% ,%¢ ). Associated to a random set M are
i d
R . = o = Q = (=]
) several processes: Dt dt M, Rt re M, Mt Ty M.
:? Let (,¥,P) be a o-finite measure space and let
’;E (?t t e R) be a right continuouvs filtration in (n.,¥). Let M
>
= be a random set defined on (2,¥).
%t, (2.1) Definition. M = (q.,¥,¥,_,M,P) 1is a regenerative set
SN — t
e’
o provided
e
k i) (D) is adapted to (9t);
.
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ii) P(Dt = 40) = 0, YVt € R;

iii) Rt(P) P(Rt € -) 1is a o-finite measure on [0, 4]

for each t € R;
(=] o Q
iv) there is a probability measure P on (” ,%9 ) such
that for all t € R,

(2.2) P(E(My )|9,) = B (£), vEe ($)7.
t

o
In this case P is called the regeneration law of M.

(2.3) Remarks. a) Hypothesis (2.1 ii) means that M is unbounded
on the right, a.e. P. This hypothesis is made to simplify the
exposition and could be dispensed with.

b) Since O(Rt) < ¥ (2.1 iii) implies that P restricted

tl
to ?t is a o-finite measure. Thus the conditional expectation

required in (2.1 iv) is well defined.

(-] ©
Let M denote the identity map on 2 . It is easy to check

(-] o o (-] (=
that (2 ,¢ ,%t+,M ,P ) 1is a regenerative set (with regeneration

law PO). In addition P° satisfies
(-] o
(2.4) P (0 € Mc[O,+[) = 1.

It is well known that any such regeneration law P° arises as the
distribution of the closed range of some subordinator (see [8, 10,
11]). That is, on some probability space there is defined a
subordinator X = (Xt:t > 0) (an increasing, right continuous
R-valued process with stationary independent increments) such that

the distribution of the random set cc(xt - Xo:t > 0} is precisely
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P°. Note that because of (2.1 ii), P (M is unbounded) = 1; it
follows that Xt t +° as t t +~, almost surely. Let pX denote
the law of X under the condition XO = X (X € R). Clearly pX is
the same as the law of (xt + ﬁ:t > 0) under PO. Because X

has stationary independent increments, the laws P (and so also

o
the regeneration law P ) are completely determined by

(2.5) P (e t) = e—aleo(e t) = exXp(-ax - tg(a)), a > O,

where the Levy exponent g is given by

- -2
(2.6) g(a) = Aa + [ (1 - e_ax)n(dx).
0

Here A > 0 is the drift of X, and 7, the Levy measure of X,
is a measure on ]0,+»[ such that the right side of (2.6) is
finite for all « > 0. Let U(x,A) denote the potential kernel

for X; namely

o ‘
1
— x I
(2.7) U(x,A) =P ([ 1A(xt)dt). |
0
Write U(A) for U(O0,A):; by spatial invariance U(x,A) = U(A-Xx).
Using (2.5) we have
0
(2.8) I e *Yu(dy) = 1/g(a), a > O.
0
-7
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Now define a measure @n1 on [O,+o[ by

(2.9) n{A) = AeO(A) + J T()x,+e[)dx, A € w[0,+m['
A
o«
One checks that I e—axﬂ(dx) = g(a)/a. If follows from (2.8) that
o
o =4
(2.10) I e_axﬂ(dx)-I e “Yu(dy) = 1/a, a > O.
0 0]

Inverting Laplace transforms in (2.10) we arrive at

(2.11) nU(A) = w(dx)U(x,A) = m(A N JO,+e[),

[0,+x]
where m denotes Lebesgue measure on R. Clearly =#n is a
o-finite measure. It is known (see e.g. [10]) that =#n is an

invariant measure for the “residual life" process (rt:t > 0)

o
which under P is a strong Markov process. This fact is also an
easy consequence of the construction of the next section; see (3.5

iii). Note that by (2.10) we have

On the other hand, by (2.5) and (2.6),
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PO(Xt)/t = A 4+ I XI (dx) .
0

Thus m[0,+o[ < ® iff po(xt) < » for all t > 0.

.
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3. Stationary Subordinators and Regenerative Sets

We shall say that a regenerative set M 1is stationary
provided M - t = {s-t: s € M} has the same law as M, for each
t € R. More formally, M is stationary if its distribution (a

o Qo
measure on (f ,9 )) is invariant under the family of

R o o o o
transformations 9 _:w > w -t, t €e R, w € Q

t

In view of the relationship noted in the last section between
subordinators and regenerative subsets of [O0,+~[, one might
think that each stationary regenerative set could be obtained as
the closed range of the appropriate stationary subordinator.
Unfortunately the distribution of the range of a stationary
subordinator is never a o-finite measure: 1if it gives an event
positive measure, then that event has infinite measure. This
problem can be sidestepped by means of a trick; the complete story

is contained in Theorem (3.5) below.

To begin, let P°  be the regeneration law of some

regenerative set as in Definition (2.1). Let
o X = (xt:t > O;Px:x € R) be the associated subordinator with Levy
‘i_‘: =] R o =]
‘2? exponent g as in (2.6). Thus P is the law (on (2 ,9 )) of
% cL{Xt - ont > 0} under any of the laws rX.
W
&ﬁ Note that the Lebesgue measure m on R is an invariant
M
:? measure for X. The proposition to follow is therefore a special
Nt
> case of a theorem of Kuznetsov [7]. See also [3] for related
-
}:H matters. Let W denote the space of paths w:R - R which are
=
o
ﬁﬁ. increasing and right continuous. Let Yt(w) = w(t),
& 4§ = a(Ys:s € R}, ‘st = a{YS:s ¢ t}).
v
[
i*"d

-10-

A 955




(3.1) Proposition There is a unique o-finite measure Q on

(W,9) under which Y = (Yt: t € R) is a strong Markov process
with one dimensional distributions all Lebesgue measure m, and
with the same transition function as X. More precisely,

i) Q(Yt € A) = m(A), teR, A€ 3;

Y
1) QUE(Yp, ) 9g,) =P T(£(X)), s20, fea,

whenever T: W - R U {+4o,-»}) is a stopping time of the filtration

(%t:t € R).

(3.2) Remarks a) It is implicit in (3.1 ii) that Q restricted
to §T+ N {TeR)} 1is o-finite.

b) Q is stationary in the sense that ot(Q) = Q, Yt € R,
where (ctw)(s) = w(t+s). Also, it is clear from (3.1 i) and
(2.5) that Q@ is invariant under the spatial translations ¢x
defined by (¢, W) (1) = w(t) - x.

Let M = M(w) = cc(Yt(w): t € R} denote the closed range of

Y. Clearly M 1is a random set on (W,$). We leave it to the

reader to check that, a.e. Q,

(3.3) lim Y_ = -1im Y_ = -~w.

1
Thus M is almost surely unbounded on both sides. Note that
o o ‘
M(¢xw) = ox(M(w)). where axw =w - X as before.
Let us say that a $-measurable random time T:W «+ R U {+»,6 —»}

is an intrinsic time if Q(T € R) = 0 and if

t + T(otw) = T(w), Vt € R, yw € W.




9 -
T

hey For example, the passage times Ls defined by

s

{'_\'

AN

N

Wy .
Bhod (3.4) LS = inf{t e R:Yt > s)

-..-1'

:;: are intrinsic times. Note that LS(¢xw) = Ls+x(w).
X :’

\

Y o o

;ﬂ (3.5) Theorem. There is a unique o-finite measure P on (£ ,¥ )

;ﬁi such that

'!'-':

-ge- o 4
‘SR (3.6) Q(f(T,M)) = (me P)(f), f e (B® 9 ) ,
o

oy e
ﬁ‘, for any intrinsic time T. Moreover
AES . o o o © . . ,

- i) (»~ ,% ,%t+,M ,P) 1is a regenerative set with regeneration

i - ‘
e law P ; i
4 \::\ :
s ii) P is stationary; i.e., at(P) =P, Yt € R.

-

o
g _ .
iﬁQ iii) P(rt € A) =nm(A), t € R, A € 3[0'+“[, where @n is
Y
' defined by (2.9).
e,
A

From (3.6) we see that Q(M € A) = (+»)-P(A) for any

0

] o
K A € ¢ , justifying the remark in the second paragraph of this
o section.
2
;{‘ The proof of (3.5) requires two lemmas. The first of these
iﬁz is a special case of a "switching identity" of Neveu [12]. We
B ‘Y"r -
z?: give a short proof for completeness.
v
-Qf (3.7) Lemma. Let S and T be intrinsic times, and let A ¢ A
A
fﬁa be (ct)—invariant. Let ¥ and Y be positive Borel functions
»
ot

fot on R with 0 < m(?) = m(P) < «. Then




» v-:.ﬂf’ " o
) e

Q(P(S)A) = Q(P(T)A).

A

Progf. We use Fubini to compute:

W
v,
v m(P)Q(?(S)a) = Q(?(S)J P (T+u)du-A)
. R

2
0

f Q(?(S°ou)?(T°ou+u)A°cu)du
'y : R

g
f

I Q(?(S-u)P(T)A)du
R

m(¥)Q(P(T)A).

“

2y .'
[}

b2 T T Ty gy

We have used the fact that ou(Q) = Q for all ueR. 0]

oA
Lyl }

an o SR

.y N .l l.,:.

(3.8) Lemma. For any s € R,

PV R i )

_ +
(3.9) Q(f(L,,¥; -s)) = (m@® m)(f), f € (%@ 3[0,+¢[) .

." ? U.J.';;

3 °

%

}; Proof. Since (LS,YLs - s8)) = (Lo, YLO)°¢s and since ¢S(Q) = Q,
:E it suffices to consider the case s = 0. The reader can check
,Ez that Q(L0 = Q) = 0 = Q(YO = 0). Thus, since Y 1is increasing,
=2

;; Q(Q(Yo):Lo <0) = Q(Q(Yo):Lo < 0)

e

Q(g(YO);Y0 > 0)

{58
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by (3.1 i). But m(gl ) = 1U(g) by (2.11). By (2.4) and

JO+eo [
(5.3) of [3] formula (3.8) follows in case s = 0. 0

Proof of Theorem (3.5).

1. Let QT denote the measure on R X no defined by the left

side of (3.6). -QT is a countable sum of finite measures, since
o ()

Q is o-finite. If ft(s,w ) = £f(t-s,w ), then since M°at =M

Qplfy) = Q(E(T-t,M))

QUf(Te0 Moo ))

QUE(T,M)) = Qq(£).

Thus, QT is translation invariant in its first coordinate. By a
result of Getoor [4], there is a unique measure PT (a countable

sum of finite measures) such that QT = m®e PT’ Since M°ot = M,

it follows from Lemma (3.7) that P,r does not depend on the

particular intrinsic time T. Thus, setting P = PT for any such

T, we have QT = m@® P, which is (3.6).

o o o

Qo
2. Recall that Otw =w -t for w € 2@ . Since

M°¢t = OtOM, LS+t = Ls°¢t, and ¢t(Q) = Q, we have

0 (P)(F) = Q(FM°¢,; 0 < Ly < 1)
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B _ SMcd . ok ,
.5 = Q(F°M P 0 < L—t be < 1)
KN

AN,

o]

R

i = Q(F°M; 0 < L_, ¢ 1)

L)

4 -:‘.' = P ( F) ’

-

.,

.‘! ! ‘

|

",

R where the first and last equalities follow from (3.6). Thus, P
N

N is stationary (i.e. (3.5 ii) holds).

N

A

;h 3. Point iii) of (3.5) is an immediate conseguence of (3.6) and
SN

¢ Lemma (3.8), since XL = Ry = rO°M. In particular, Rt(P) is
'\:_-4. o)

(2

e o~finite for any t € R.

.

':-,: . o ) ° o . .

b 4. To verify that (2 ,¢ ,%t+,M ,P) satisfies Definition (2.1)
k-~ : :

“ it only remains to check (2.2). Because et(P) = P it suffices
-0 o

yi- to consider the case t = 0. Given F € 454 Dote that

N

-“: - - - 1

b F°M € %L +° Also, MD ce(Yt YL :t > LO). Since LO is a

K 0] 0 0

;) stopping time of ($t+), the distribution of MD conditional on
NN o

VA o

7 9. , 1is the same as the P distribution of ct{X,: t > 0) (by the
e 0

o (-3

W strong Markov property (3.1 ii)). Since P is the pO

;%; distribution of cc(xt:t > 0}, (2.2) holds as required. 0
p -_".4‘

5
[
- g 4 An Application
o8

:{, As an application of the construction of the last section we
s
LN shall give a short proof of the distributional equality M d -M,
Eg whenever M 1s a stationary regenerative set.

l‘*.l

:f

>

A% -15-

..
,aé

Cd
; f‘-
N WA W e N
W' M. 1,) . L R ™ rn\,_ » L0 Rl R R N - . " o N L LA T PO IO S T T ) - -

AR D o e A o S e T e A ‘*;h‘icc’:-i}:m-:a:-i}ik:.c»}t:ivixqsiﬁﬁﬁﬁiﬁi




4 LT w.'
[] "‘..‘l a
PRSI +

4

Vs

oy v a
R -’.i‘ o

IR

o

Thus, let M be a stationary regenerative set with
regeneration law Po. Let P be the distribution of M on
(R ,$ ). We claim that, up to a constant multiple, P must be
identical with the particular stationary regenerative set
constructed in the last section, starting from Po. Indeed, the
residual life process (rt), which under P° is a strong Markov
process, is easily seen to be a finely recurrent process with a

single recurrence class. By [1], the process (r_) has a

t

o-finite invariant measure which is unigque up to a constant

multiple. But each of the laws =@ = rO(P) and @ = ro(§) is a
o-finite invariant measure for (rt). Thus = and 7 are
multiples of one another. It follows that P and P are

multiples, as claimed.

(4.1) Theoren. Let (n,?,?t,M,P) be a stationary regenerative

{f "

set. Then for any A € $ , P(M € A) = P(-M € A). That is, M
M.

Proof. By the discussion preceding the theorem, we may work with

< o
the canonical realization (n ,%o,sz+,M ,P). Moreover we can
assume that P arises via Theorem (3.5). Thus let (Yt) be the

stationary subordinator, and M the closed range of Y, as in

~

(3.5). Consider the process Y, =

N _Y(—t)-' t € R. Clearly Y is

increasing and right continuous. We leave it to the reader to

check that (? under Q has the same distribution as (Yt)

t)
under Q. Note that the closed range M of Y is just -M.

Moreover, io = inf{t:?t > 0) 1is an intrinsic time (of Y). Thus

P(A) = Q(0 < LO < 1, M e A)
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where A = {(w :-w € A}. The identity P(A) = P(Z), YA € %o is a

oty ,
i

A
-

formal version of the statement of the theorem, so we are done. 0
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